CCSI² Design of Experiments

U.S./Norway Bilateral – 20180502 Michael Matuszewski – Associate Technical Director of CCSI²

CCSI²: Relevant Highlights

- Industrial Collaborations
 - •CCSI² Supports 7 CO₂ Capture Program projects \$40MM+ in total project value (TRL 3-7)
 - Discovery of Carbon Capture Substances and Systems (DOCCSS) Initiative, National Carbon Capture Center (NCCC), LLNL MECS Technology, UT Austin AFS, UKy Process Control
 - •Additional external industrial agreements (executed or in progress)
 - GE, ADA-ES, Test Centre Mongstad (TCM), SINTEF, Canada's Oil Sands Innovation Alliance (COSIA)
 - Includes enabling capture technology support:

.....

- Aerosol, dynamic characterization, turndown, advanced process control

Lawrence Livermore National Laboratory

Optimal Design of Experiments

Improves model while optimizing experimental data generation
Applicable to lab through large pilot scale

CCSI² Implementing Optimal Design of Experiments at TCM MEA Campaign in June-July

West Virginia University.

Solvent Modeling Framework

Fundamental characterization of solvent, device and system
Collaboration with NCCC and (soon) TCM under International Test Center Network (ITCN)

Pacific

CCSI² and Toolset Support Personnel Profile

- 49 Total Full-Time or Part-Time
 - 3 Federal Management
 - 7 Contractor Support Staff
 - 28 CCSI² or Toolset Support Engineers
 - 2 Faculty
 - 5 PhD Students
 - 4 Post-Docs
- 5 National Labs, 2 Universities, 1 Contractor
- 35 PhD Level obtained or in pursuit
- 46 Industrial and Academic Stakeholder Board Members

Lawrence Livermore

6 Executive Committee Members

WestVirginiaUniversity,

CCSI Toolset: New Capabilities for Modeling

Maximize the learning at each stage of technology development

- Early stage R&D
 - Screening concepts
 - Identify conditions to focus development
 - Prioritize data collection & test conditions
- Pilot scale
 - Ensure the right data is collected
 - Support scale-up design
- Demo scale
 - Design the right process
 - Support deployment with reduced risk

Open Source Release 3/30/2018 github.com/CCSI-Toolset

2016 R&D 100 Award Recipient

West Virginia University.

CCSI²: Accelerating Rate of RD&D

Rapidly synthesize optimized processes to identify promising concepts

Quantify sources and effects of uncertainty to guide testing & reach larger scales faster

Stabilize the cost during commercial deployment

Baseline Modeling Framework

Example: Integrated Multi-Scale Solvent Model Summary

- Standardized model for comparing different proposals for advanced solvent-based capture technologies
 - Open Source
 - Simultaneously leverages data at all scales
 - Validated Framework
 - Well Documented
 - Uncertainties Quantified
- Aqueous monoethanolamine (MEA) used as baseline
 - Current Industry Standard
 - Extensive Amount of Data Available
- Fully applicable to alternative solvents

Managing and Refining Uncertainty

- Uncertainty evaluated in the following models:
 - Transport models (surface tension, viscosity, diffusivity)
 - Thermodynamic models (density, VLE, heat capacity)
 - Hydraulic models (pressure drop, holdup)
 - Mass transfer models (mass transfer coefficients, interfacial area)
 - Kinetic model
- Model Validation with Data and propagation of all parametric uncertainties through the model
 - UQ methodology is leveraged to improve models and test plans

Integrated Multi-Scale Model Approach

Example UQ Results: One-Parameter Marginal Distribution

Prior distribution is multivariate normal with hyperparameters taken from deterministic regression results

Prior Distribution
Posterior Distribution

Parameter values normalized by dividing by deterministic model value

#	Parameter Name
1	DGAQFM (MEA+)
2	DGAQFM (MEACOO-)
3	DHAQFM (MEA+)
4	DHAQFM (MEACOO-)
5	HENRY/1 (MEA-H ₂ O)
6	HENRY/2 (MEA-H ₂ O)
7	NRTL/1 (MEA-H ₂ O)
8	NRTL/1 (H ₂ O-MEA)
9*	NRTL/1 (CO ₂ -MEA)
10	NRTL/2 (H ₂ O-MEA)

*Not Considered in UQ

Design of Experiments (Zero Engineering Insight)

- Brute force approach
- 5 increments for each variable
- Exponential increase in test runs as variables increase

Design of Experiments Conceptualization

Design of Experiments Conceptualization

Los Alamos

Lawrence Livermore

THE UNIVERSITY OF

West Virginia University.

Bayesian SDoE

Effect of Bayesian Inference on CI Width

Summary

- > Supports more <u>accelerated</u>, risk-averse CCS scale up, demo and commercialization
- > Optimizes system operation, configuration, economics
- CCSI² employs a multi-scale modeling framework (*materials through systems*) formulated in fundamental principles, providing "glass-box" understanding
- Interconnectivity of scale, physics and chemistry permits well-informed modeling framework with *full quantification of uncertainty*
- UQ leveraged to improve model prediction and data generation
- High throughput, intelligent computational screening informs most effective R&D pathways for novel and <u>transformational performance goal targeting</u>
- > Multiple active collaborations with world-class industrial partners and test centers
- CCSI² can also support the full commercialization pathway for <u>alternative technology</u> <u>platforms</u>

For more information https://www.acceleratecarboncapture.org/ https://github.com/CCSI-Toolset

Michael S. Matuszewski, Associate Technical Director Michael.Matuszewski@netl.doe.gov

