

Driving Innovation → Delivering Results

CHEMICAL LOOPING COMBUSTION RESEARCH AT NETL

Doug StraubMechanical Engineer, April 14, 2016

PRESENTATION OUTLINE

- Overview status of CLC Technology
 - Where Are We?
 - What Is Our End Goal?
- FY16 NETL Chemical Looping Combustion Research Areas
 - Scope and WBS
 - Task by task summary and overview
- NETL's Chemical Looping Combustion Test Facility and Operating Experiences
 - Nominal 50 kW_{th} CLC system
- Summary And Future Work

CLC TECHNOLOGY – WHERE ARE WE?

- Preliminary techno-economic analyses (TEAs) have been completed
 - Circulating reactor (Fe₂O₃ and CaSO₄) DOE/NETL –
 2014/1643
- TEA Conclusions
 - Significant amount of uncertainty ← very little proven reliable operating data
 - Operability and reliability are major challenges for technology feasibility
 - Oxygen carrier makeup cost is a key factor for circulating reactor systems
- Technology gaps identified by developers
- Multiple CLC test facilities do (or will) exist

Exhibit ES-3 Cost of electricity breakdown comparison

Cost	Fe ₂ O ₃ (\$/MWh)	CaSO₄ (\$/MWh)	Conventional PC BBR Case 12
Capital	49.6	53.4	73.1
Fixed	11.3	12.2	15.7
Variable	25.7	8.4	13.2
Maintenance materials	3.2	3.5	4.7
Water	0.4	0.4	0.9
Oxygen carrier makeup *	18.7	1.1	N/A
Other chemicals & catalyst	1.9	1.7	6.4
Waste disposal	1.4	1.7	1.3
Fuel	28.4	30.8	35.3
Total	115.1	104.7	137.3

^{*}Fe $_2$ O $_3$ oxygen carrier makeup: 132 tons/day @ \$2,000 per ton; Limestone carrier makeup: 439 tons/day @ \$33.5 per ton

CLC – WHAT IS OUR END GOAL?

GOAL:

- Determine if CLC is a feasible technology for FE and worthy of additional investment/development
 - → Data and information for strategic decision making
- If it is feasible, THEN
 - Help developers overcome technical issues
 - Help technology be successful
 - Ultimately commercialization
 - → jobs and growth

HOW DO WE GET THERE?

- Focus on the "right" issues
- Build "world-class" expertise and capabilities
- Leverage both internal and external resources

FY16 ADVANCED COMBUSTION SCOPE

- Address technology gaps that have been identified by key stakeholders
 - Chemical looping combustion
 - Supercritical CO₂ heat exchangers
- Key capabilities
 - CFD tools for technology scale-up
 - Sensors that enable more reliable system control
 - Oxygen carrier materials (better performance, more durable)
 - Materials for supercritical CO₂ cycles

ADV. COMBUSTION BREAKDOWN BY TASK/ENTITY - FY16

- 100 Project Management
- 200 Component Development
- 300 Oxygen Carrier Performance and Durability
- 400 Sensors Development and Testing
- 500 Chemical Looping Test Bed Operations
- 600 Materials for supercritical CO₂ Cycles

TASK 2 — COMPONENT DEVELOPMENT FOR CLC

Objectives

- Reduce carrier losses from conventional cyclone <u>during pressure upset</u> by an order of magnitude
- Predict pressure drops for horizontal dense solids transport (small H/L aspect ratios) to within +0.1 psi with turn-around times of less than 48 hrs
- Achieve char/carrier separation rates greater than 0.5 kg/m²-sec for Group A/Group B and Group A/Group D mixtures
- Preliminary scoping study on novel concepts

Design	Standard	Top-Hat	Slotted	Uniflow
Loss percentage [%]	95.06	98.31	82.24	8.62

TASK 2 — COMPONENT DEVELOPMENT

Rotating fluidized bed

Outlet 58% HDPE

Chimney 2% HDPE

Task 3 – Oxygen Carrier Performance and Durability

Carrier kinetics and tool development

 Guidance document for integrating oxygen carrier kinetic experiments with CFD reactor sub-models

• Carrier improvement

- Develop more durable, lower cost Cu/Fe OC
- Protocol for screening new carrier materials
- Carrier manufacturing

Attrition studies in harsh environments

- Develop a simple attrition model
- Shakedown high temperature jet cup

In-situ microstructural degradation

- Laser confocal microscope with hot stage
- Monitor effects of temp, gas composition, and time independently

CLOU Oxygen Carrier (CuO)

 $2CuO \rightarrow Cu_2O + \frac{1}{2}O_2$

Gas: Argon 1 slpm

Task 4 – Sensors Development And Demonstration In CLC Systems

Solids circulation

- NETL-CMU Microwave Doppler Sensor
- Tested in NETL's 50kW Chemical Looping Reactor
- Performance evaluation ongoing

TASK 5 – CHEMICAL LOOPING REACTOR TESTING

OPERATING MODES

Electric preheat

Room temperature → Auto-ignition temperature

Natural gas augmented preheat

- 1200F to 2000F
- Gas phase combustion in both reactors

Carrier addition

- Reduce gas flows
- Add carrier in batches via lockhopper

Chemical looping combustion

- Transition from air to N2 as fluidizing gas in FR
- Adjust natural gas flow for CLC

OXYGEN CARRIER — HEMATITE CONCENTRATE

(WABUSH MINE, CANADA)

- Relatively low cost
- High iron content
- Good attrition resistance
- Poor reactivity

PROCESS DATA FROM NETL UNIT — PROMOTED HEMATITE CARRIER — 1ST TEST

- Over 12 hours of CL operation
- No significant process upsets
- Carbon balance was less than 90%
 - Internal leakage through refractory in L-valve region
- Fuel conversion typically less than
 50%

PROCESS DATA FROM NETL UNIT – PROMOTED HEMATITE CARRIER – 2ND TEST

- Carbon balance was significantly improved
 - Greater than 90%
- Fuel conversion still typically less than 50%
- Short duration test periods
- Operational issues encountered

SOURCE OF OPERATIONAL ISSUES

- Cake-like deposits have been seen in tests with MgO promoted hematite carrier
 - Deposits only in the FR vent lines (reducing environment)
 - Downstream/lower temperature components
- Produced enough backpressure to affect pressure balance and control

SUMMARY OF NETL CLC TESTS

- CLC technology has "potential" to achieve cost-effective reduction in GHG emissions from fossilfueled combustion
- NETL's 50kW_{th} CLC test facility
 - Bubbling fluidized bed fuel reactor
 - Bubbling/turbulent fluidized bed air reactor
- Tested several different oxygen carriers
 - Hematite (Wabush Mine; Wabush, Newfoundland and Labrador, Canada)
 - MgO promoted hematite
- Findings
 - Mg promoted carrier materials produced coatings/cake in downstream lower temperature piping components
 - Operational pressure upsets have resulted in high rates of oxygen carrier loss
 - Pressure perturbations of 1-2 psi at rates of 1 psi/second have been recorded

FUTURE EFFORTS

- Establish baseline carrier loss/make-up requirements for this test rig
 - Sensitivity studies have shown this to be a critical performance parameter
 - Need better solids mass closure
- High temperature microwave doppler solids circulation sensor
- Collaborations on oxygen carrier testing are encouraged
 - NETL attrition test unit would be used to screen materials
 - Quantity should be in the 100-150 kg range for one test

It's All About a Clean, Affordable Energy Future

the ENERGY lab

Delivering Yesterday and Preparing for Tomorrow

