

Review of NETL's Supercritical CO₂ (sCO₂) Techno-economic Analyses

Nathan Weiland, Wally Shelton, Travis Shultz, Charles White

September 20th, 2016

Why Supercritical CO₂ (sCO₂) Power Cycles?

- Applicable to multiple heat sources (nuclear, solar, fossil, waste heat) for indirect heating
- Potential for higher efficiency relative to traditional power cycles
 - High thermal recuperation rejects less heat to the environment
 - Single phase fluid heat transfer
 - Reduced cycle compression power near the CO₂ critical point
- Reduced turbomachinery sizes due to higher working fluid density
- CO₂ is generally stable, abundant, inexpensive, non-flammable, and less corrosive than H₂O

sCO₂ Cycles for Fossil Energy Applications

Indirectly-heated cycle

- Applicable to advanced combustion boilers
- Incumbent to beat: USC/AUSC boilers
- High fluid density, low pressure ratio yields compact turbomachinery
- Ideally suited to constant temp heat source
- Adaptable for dry cooling

Directly-heated cycle

- Applicable to IGCC and NGCC
- Incumbent to beat: Adv. F-, H-, or J- class
 Combined Cycle (NGCC or IGCC) w/ CCS
- Fuel flexible: coal syngas or NG
- 100% CO₂ capture at storage pressure
- Net water producer if air cooled

U.S. DOE Fossil Energy sCO₂ Power Cycle R&D Efforts

sCO₂ Power Cycles Base Program

- Implemented through multiple Fossil Energy programs
- Combination of extramural projects and internal NETL research and analytical capabilities
 - Turbomachinery
 - Recuperators
 - Oxy-fuel Combustion

- sCO₂ Heater Integration
- Materials & Fundamentals
- Systems Analysis

DOE sCO₂ Crosscut Initiative (STEP)

- Collaboration between Fossil, Nuclear & Renewable DOE Offices
- Mission: Address technical issues, reduce risks, and mature technology to accelerate commercialization
- Objective/goal: Design, build, and test 10 MWe pilot sCO₂ facility (STEP)
 - Conceptual design studies complete
 - \$100 Million, 6 year build and test program to start in 2016

NETL Research and Innovation Center *Core Competencies*

Computational Science & Engineering

High-Performance Computing

Data Analytics

Materials
Engineering &
Manufacturing

Structural & Functional

Design, Synthesis & Performance

Geological & Environmental Systems

Air, Water & Geology

Understanding & Mitigation

Energy Conversion Engineering

Component & Device

Design & Validation

Systems
Engineering &
Analysis

Process & System

Optimization, Validation & Economics

Program Execution & Integration

Strategic Planning

Project Management

Major sCO₂ Systems Analyses

- Techno-economic Evaluation of Utility-Scale Power Plants Based on the Indirect sCO₂ Brayton Cycle
 - Final report under revision
- Performance of an Integrated Gasification Direct-Fired
 Supercritical CO₂ Power Cycle
 - Plant cost estimate nearing completion
- Development of a dynamic sCO₂ plant model to assess control mechanisms and transient/part load performance of the 10 MWe STEP demo sCO₂ plant
 - Preliminary analyses complete, model refinements ongoing

Utility-Scale Indirect sCO₂ Plants Overview

- Early work shows that the narrow temperature addition window of a recompression sCO₂ Brayton Cycle restricts boiler selection
 - Modified Oxy-CFB boilers with CCS chosen for analysis
- Reference: Oxy-Coal-Fired CFB Rankine Cycles with CCS (24.1 MPa/600 °C/620 °C)
- Oxy-Coal-Fired CFB sCO₂ Brayton Cycles with CCS: (620°C & 760°C)
 - Recompression cycle with reheat and/or main compressor intercooling (4 combinations x 2 temperatures)
- Performance Comparisons
- Economic Comparisons & Sensitivity of COE to TPC
- Potential for Improved Efficiency Alternate Cycles

Oxy-Coal-Fired CFB Recompression sCO₂ Brayton Cycle

Indirect sCO₂ Plant Performance

Overall Plant Efficiencies (% HHV)

Indirect sCO₂ Summary and Conclusions

- Objective Compare sCO₂ Recompression Brayton Cycle(s) to a SOA Steam Rankine Cycle.
- Performance determined for four configurations, all showing performance improvement.
- At 620 °C turbine inlet temperature, the reheated and intercooled sCO₂ case shows a ~2 percentage points improvement in plant efficiency compared to the steam Rankine case.
- At the higher temperature (760 °C), the comparison to the Steam Rankine Cycle (620 °C) improves in overall efficiency to ~ 6 percentage points.
- Further optimizations of the configurations considered may be required to demonstrated an economic advantage.
 - Condensing CO₂ cycles
 - Partial Cooling sCO₂ Cycle

Direct sCO₂ Cycle Analyses

 Direct-fired sCO₂ power cycles are attractive due to their high efficiency and inherent ability to capture CO₂ at storage-ready pressures

High pressures lead to high power density and reduced

footprint & cost

Study Objectives:

 Develop a performance baseline for a syngasfired direct sCO₂ cycle

 Analyze sensitivity of performance and cost indicators to sCO₂ cycle parameters

Coal-fired Direct sCO₂ Plant Block Flow Diagram

Direct sCO₂ Conclusions and Future Work

Conclusions:

Direct coal-fired sCO₂
 cycle developed shows
 improved performance
 relative to IGCC and
 other reference cases

Parameter	IGCC	sCO₂ Cycle	EPRI sCO ₂ Cycle ²
Net power output (MWe)	497	595	583
Net plant efficiency (HHV %)	31.2	39.8	39.6
Carbon capture fraction (%)	90	98	99
Captured CO ₂ purity (mol% CO ₂)	99.99	99.44	98.1

- Capital costs are expected to be lower than IGCC due to replacement of gas turbine and steam bottoming cycle
- Sensitivity studies provide guidelines for improving performance and reducing costs

Future Work

- Incorporate the effects of turbine blade cooling flows (completed)
- Develop cost estimate for the improved baseline case (nearing completion)
- Extend analyses to development of natural gas-fired direct sCO₂ cycles

⁵ National Energy Technology Laboratory (NETL). (2010, November 2). Cost and Performance Baseline for Fossil Energy Plants Volume 1 Bituminous Coal and Natural Gas to Electricity. Pittsburgh, Pennsylvania.

Other Current and Future sCO₂ Work within SEA

- Pre-Screening of Indirect sCO₂ Cycle Integration
 Opportunities (complete)
 - Evaluated the options for sCO₂ cycle integration with chemical looping combustion, magnetohydrodynamics, and fuel cell systems.
- Process Systems Engineering Research Team
 - Pressure-driven Aspen Plus Dynamics model of a 10 MW Indirect sCO₂
 Recompression Brayton Cycle
 - Development of a multi-stage radial sCO₂ compressor in Aspen
 Custom Modeler
- Development of a 1-D sCO₂ recuperator sizing/costing model
 - Enables recuperator costing as a function of approach temperature,
 pressure drop, and materials of construction

It's All About a Clean, Affordable Energy Future

For more information on our sCO₂ efforts, contact:
Nathan.Weiland@netl.doe.gov, 412-386-4649 (NETL Research)
Rich.Dennis@netl.doe.gov, 304-285-4515 (DOE sCO2 Program)

