

Pipeline impurities and specifications

Arne Dugstad, (arne.dugstad@ife.no)

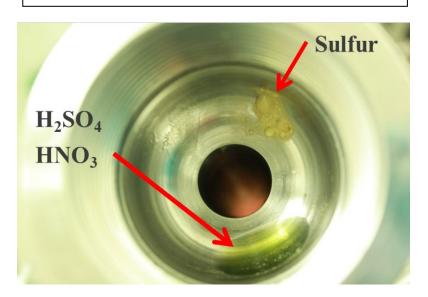
Institute for Energy Technology

P.O. box 40, NO-2027, Kjeller, Norway

U.S.-Norway Bilateral Meeting October 31-November 1, 2023

Long experience with CO₂ transport!

- •CO₂ injection for EOR > 40 years (USA)
- More than 100 installations, more than 5000 km pipeline
- •C-steel: Good experience with <u>clean and dry CO₂</u>
- Reported corrosion when water accumulates
- •CRA: "Wet" CO₂, Sleipner, short distance
- •Thousands of papers/corrosion studies for $pCO_2 < 20$ bar
 - Relative few studies for $pCO_2 > 50$ bar and CO_2 with impurities


Why are we spending a lot of resources on research on CO₂ specifications? What are the new corrosion and materials challenges?

CCS CO₂ transport challenges vs. previous CO₂ transport experiences

- New impurities: H₂O, H₂S, O₂, SOx and NOx, CO, NH₃, +++
 - When will cross chemical reaction take place?
 - •When will aqueous phases form?
 - •When will corrosion become a problem?
- Complex network, many point sources
 - mixing, compatibility, monitoring
- Reuse of existing oil and gas infrastructure

$$2 H_2S + O_2 \rightarrow S_x + 2 H_2O$$

 $4 NO_2 + O_2 + 2 H_2O \rightarrow 4 HNO_3$
 $SO_2 + H_2O + \frac{1}{2}O_2 \rightarrow H_2SO_4$

How much and which types of impurities can be accepted in the CO₂ stream?

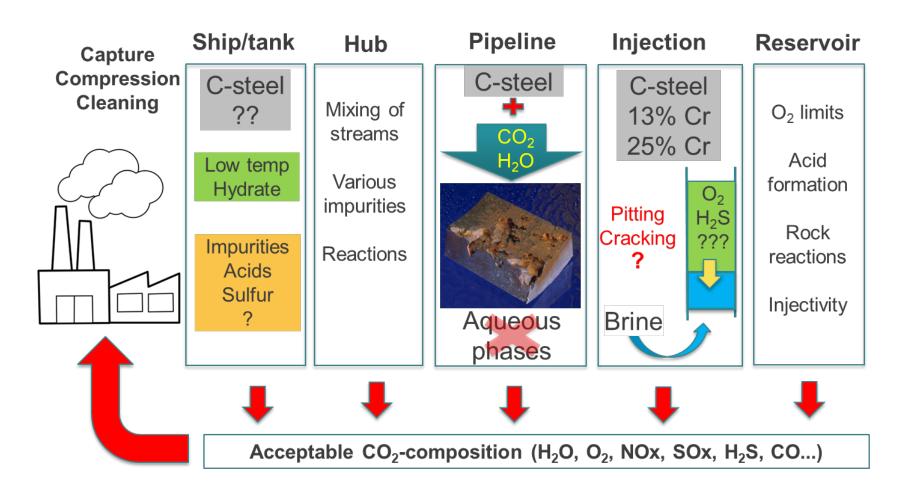
Comp	US	Dynamis	Goldeneye/	CarbonNet	Northern	NETL	Porthos	TES/OGE	Aramis	Aramis	AMPP
ppm-mol	pipelines		Peterhead	project	Lights	design			Ship	Pipeline	Tentative
	<2007	2007	2014 (2016)	2016	2019	2019	2021	2022	2023	2023	2023
H ₂ O	-630	500	50	100	30	500	70	30	30	70	100
H ₂ S	-9000	200	0.5	100	9	100	5	10	5	5	10
СО	-1000	2000	10	900-5000	100	35	750	100	1200	750	1000
O ₂	-70	<40000	1 (5)	20000-50000	10	10	40	30	10	40	20
SOx (total S)		100	10	250-2500	10	100	20	30	10	20	20/60
NOx		100	10	200-2000	10	100	5	1	1.5	2.5	2.5/10
MeOH							620		40	620	
NH3						50	3	10	10	3	

NETL (National Energy Technology Laboratory)

AMPP: Association for Materials Protection and Performance

- Generic specifications,
- Project specific specifications

- Concentrations stricter with time
- No model can predict the limits (OLI)
- ISO standard. No recommended limits
- Lack of experimental data
- Ongoing JIP projects: IFE-KDC IV, DnV, Ohio,...



Acceptable CO₂ specifications

- •A CO₂ specification that does not give a **corrosive phases**
- The acceptable CO₂ composition will be project specific.
- •NO₂ a "bottle neck": The presence of NO₂ and the combination of NO₂, SO₂, H₂S and O₂ promote formation of corrosive aqueous phases at very low water concentration
- Optimization. Modelling and testing/verification required

Which part of the CCS chain constrains the CO₂ stream composition?

