Project ECO2S Phase 2 CarbonSAFE Field Project

Project ECO₂S Phase 2 CarbonSAFE Field Project

Prepared for: U.S. – Norway Collaboration on CCS/CCUS 2017 Bilateral Meeting

Storage Breakout Session: 4. Potential New Cooperative Projects

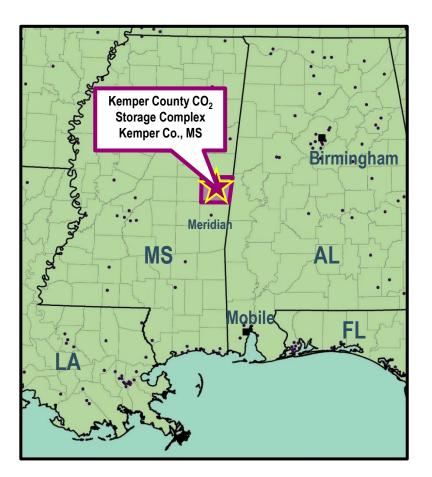
Sponsored by: U.S. Department of Energy Norwegian Ministry of Petroleum and Energy

Prepared By: Vello Kuuskraa, President Advanced Resources International, Inc.

August 28, 2017 Washington DC

The CarbonSAFE Project: Background

In mid-2016, the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) issued a Funding Opportunity Announcement to develop an integrated CCS storage program ready for commercial operation by 2025.


This program called CarbonSAFE (Carbon Storage Assurance Facility Enterprise) consisted of four distinct phases:

- Phase I. Pre-Feasibility Study
- Phase II. Storage Complex Feasibility Study
- Phase III. Site Characterization and Permitting
- Phase IV. Infrastructure Construction

A consortium of companies, led by Mississippi Power Company (MPC), submitted a proposal and were awarded a Phase II portion of CarbonSAFE. The project called ECO_2S (Early CO_2 Storage) is located in Kemper County, Mississippi.

Kemper County CO₂ Storage Complex

The Kemper County CO₂ Storage Complex is located next to the Kemper Energy Facility in Kemper County, eastcentral Mississippi.

Source: Mississippi Power Company https://www.flickr.com/photos/mississippipower/27709115165/

Background

Prior Pre-Feasibility on the Kemper County CO₂ Storage Complex. Mississippi Power Company (MPC), in conjunction with Southern Company Services (SCS), Advanced Resources and others had performed considerable pre-feasibility work on the Kemper County CO_2 Storage Complex. This enabled the project to qualify for the Phase II: Storage Complex Feasibility for CarbonSAFE.

The storage pre-feasibility work involved:

- 1. Performing a Geologic Evaluation of the Proposed CO₂ Storage Site
- 2. Establishing the Presence of Sufficient CO₂ Storage Capacity
- 3. Performing Reservoir Modeling for the Areal Extent of the CO₂ Plume and a More Rigorous Estimate of CO₂ Storage Capacity
- 4. Securing Surface and Pore Space Rights
- 5. Conducting Initial Stakeholders Analysis, and Completing Other Pre-Feasibility Tasks

This presentation will discuss the pre-feasibility work conducted by the study team in preparation for proceeding with the Phase II. Storage Complex Feasibility Study that is now underway.

1. Performing Geologic Evaluation of the Proposed CO₂ Storage Site

The first pre-feasibility effort was a comprehensive, multi-disciplinary geologic evaluation by the Geological Survey of Alabama (GSA), with Dr. Jack Pashin as Principal Investigator, entitled, "Geological Evaluation of the Potential for CO_2 Sequestration in Kemper County, Mississippi."

This study identified two Lower Cretaceous strata, the Paluxy and the Washita-Fredericksburg sandstone saline formations, and one Upper Cretaceous interval, the Lower Tuscaloosa Massive Sand, as geologically favorable settings for storing CO_2 in Kemper County.

These three formations are overlain by the thick Tuscaloosa Marine Shale, a regionally extensive confining unit (seal).

The study used a 25 well data set, plus information from two previous drilled wells, to establish the geologic foundation for the CO_2 Storage Complex.

Kemper County - Generalized Stratigraphy

Tertiary	Eocene	Lower Wilcox Group	Nanafolia Fm.	USDW
	Paleocene	Midway Group	Naheola Fm	Potential USDW
			Porter's Creek Clay	Regional Seal
Cretaceous	Upper	Selma Group	Predominately Chalk	Regional Seal
		Eutaw Fm.		Potential USDW
		Tuscaloosa Group	Upper	Potential USDW & Water Supply
			Marine Shale	Regional Seal
			Lower & Massive Sand	Potential Saline Fm.
	Lower	Washita- Fredericksburg		Saline Fm.
		Paluxy Fm.		Saline Fm.
Paleozoic Unconformity				
(Lower Cretaceous Morringsport, Ferry Lake & Rodessa Fms missing @ Kemper Co.)				

Source: Pashin, J.C., D.J. Hills, D. C. Kopaska-Merkel, M.R. McIntyre, Geological Evaluation of the Potential for CO₂ Sequestration in Kemper County, Mississippi, Final Report, prepared for Southern Company Research and Environmental Affairs, June 1, 2008.

 Tuscaloosa Massive Sand

 Depth: 3,000' to 3,252'
 Porosity: 20%
 Net Sand: 246'

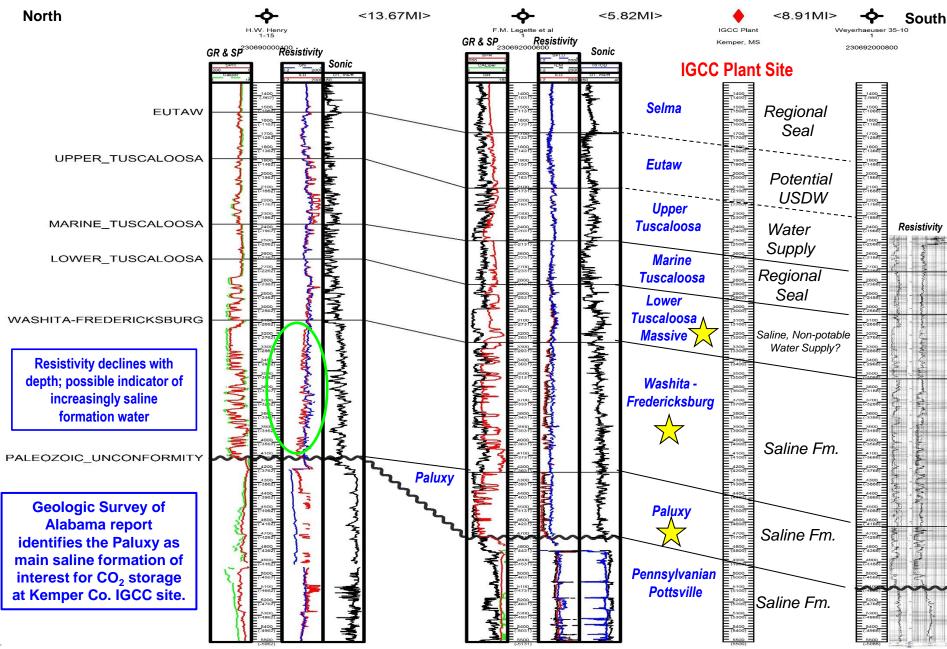
Washita-Fredericksburg

- Depth: 3,252' to 4,225'
- Porosity: 18%
- Net Sand: 638'
- Paluxy
 - Depth: 4,225' to 4,808'
 - Porosity: 18%
 - Net Sand: 444'

6

2. Establishing the Presence of Sufficient CO₂ Storage Capacity

The GSA study provided a preliminary CO_2 storage capacity estimate (at 10% efficiency) of 4 to 5 MMmt per square mile (640 acres) for the Paluxy Sandstone implying a storage capacity of 200+ MMmt for the proposed CO_2 storage unit.


Subsequently, Advanced Resources performed additional geologic work and constructed a series of geological cross-sections for the CO_2 storage site. These cross-sections confirmed that all three of the saline formations - - the Paluxy, the Washita-Fredericksburg, and the Tuscaloosa Massive Sand - - are regionally extensive with considerable net sand thickness.

Using this additional information, the Project Team calculated a CO_2 storage capacity of 480 MMmt for the proposed CO_2 storage site using the volumetric DOE/NETL CO_2 storage capacity estimation methodology (at 10% efficiency):

- 170 MMmt for the Paluxy,
- 220 MMmt for the Washita-Fredericksburg, and
- 90 MMmt for the Tuscaloosa Massive Sand.

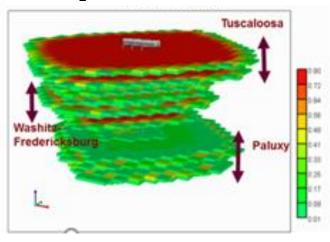
Structure Cross-Section A-A'; Depth 1300' – 5500'

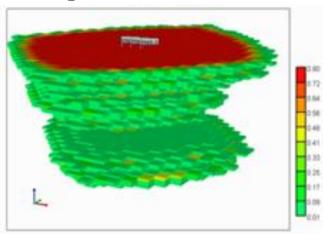
Advanced Resources International, Inc.

3. Performing Reservoir Modeling to Establish the Areal Extent of the CO₂ Plume and A More Rigorous Estimate of CO₂ Storage Capacity

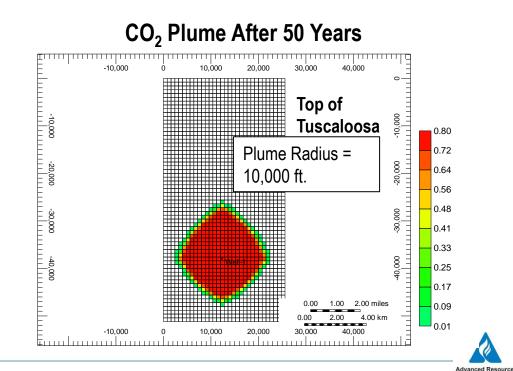
Advanced Resources undertook reservoir modeling to: (1) better understand CO_2 injectivity, (2) calculate the areal extent of the CO_2 plume, and (3) provide a more rigorous estimate of CO_2 storage capacity.

The reservoir model used 43 distinct layers to represent the individual sands and shales of the three proposed CO_2 storage formations - Tuscaloosa Massive Sand, Washita-Fredericksburg and Paluxy, including their interburdens and seals.


Reservoir modeling showed that the 30,000 acre proposed CO_2 storage site had an overall CO_2 storage capacity of 300 MMmt and could readily accommodate 3 MMmt/yr of CO_2 injection for 30 years.


International Inc.

CO₂ Plume Model for Kemper County CO₂ Storage Complex


CO₂ Plume After 30 Years

CO₂ Plume After 50 Years

The reservoir model used 30 years of CO_2 injection at 3 MMmt/ year and 20 years of shut-in to establish the maximum areal extent of the CO_2 plume.

4. Securing Surface and Pore Space Rights

The proposed CO_2 storage area would encompass a ~30,000 acre area surrounding the Kemper energy facility. As part of defining and securing the proposed CO_2 storage site, MPC had performed the following work:

- Defined the protected and environmentally sensitive areas at and near the proposed well pad to avoid potential conflict.
- Successfully secured surface and pore space rights in the center of the CO₂ storage site.
- Examined and resolved any conflicts with lignite development and mineral rights in the CO₂ storage area.

5. Conducting Initial Stakeholder Analysis and Other Pre-Feasibility Tasks

MPC, as part of siting and constructing the Kemper energy facility, had already conducted extensive stakeholder analysis in the communities near the CO_2 storage site and within the expected areal extent of the CO_2 plume.

MPC, in conjunction with ARI, also prepared preliminary capital and operating costs for commercial-scale CO_2 storage at the Kemper County CO_2 Storage Complex.

Current Status of ECO₂S


Currently, two deep wells have been drilled, logged and cored to provide more site specific reservoir characterization data. Drilling of the third well is underway.

These wells will subsequently become key CO_2 plume and pressure monitoring wells for the commercial phase of Project ECO₂S.

Collection of Reservoir Characterization Data

A suite of geophysical logs were run across the 3,160 foot reservoir interval, from 2,560' to 5,720'.

Obtaining core samples in the unconsolidated sand portions of the reservoir has been a challenge.

Potential Areas for U.S. and Norwegian R&D Cooperation on Project ECO₂S

Two areas offer the potential for fruitful cooperation between Project ECO_2S and Norwegian R&D institutes:

- 1. Application of Microseismic for Detection of Seismic Activity:
- Baseline Surveys
- Design and Establish Location for Recording System
- Long-Term Surveillance of CO₂ Injection and Post-Injection Storage Behavior
- 2. Cooperation on CO₂ Storage Modeling and Monitoring:
 - Geologic Model
 - Comprehensive Site Monitoring Plan
 - Modeling of Plume Dynamics
 - Input to ISO Standards

Acknowledgements

The Project Team led by Southern States Energy Board, Mississippi Power Company and Southern Company Services, with technical support from Advanced Resources and a host of key subcontractors, acknowledge the valuable support provided by the U.S. DOE National Energy Technology Laboratory on this challenging and valuable CarbonSAFE field project.

15 | JAF2017_074.PPT | August 25, 2017 | www.adv-res.com

Office Locations **Washington, DC** 4501 Fairfax Drive, Suite 910 Arlington, VA 22203 Phone: (703) 528-8420

Houston, TX 11931 Wickchester Ln., Suite 200 Houston, TX 77043-4574 Phone: (281) 558-9200

Knoxville, TN 1210 Kenesaw Ave. Suite 1210A Knoxville, TN 37919-7736

