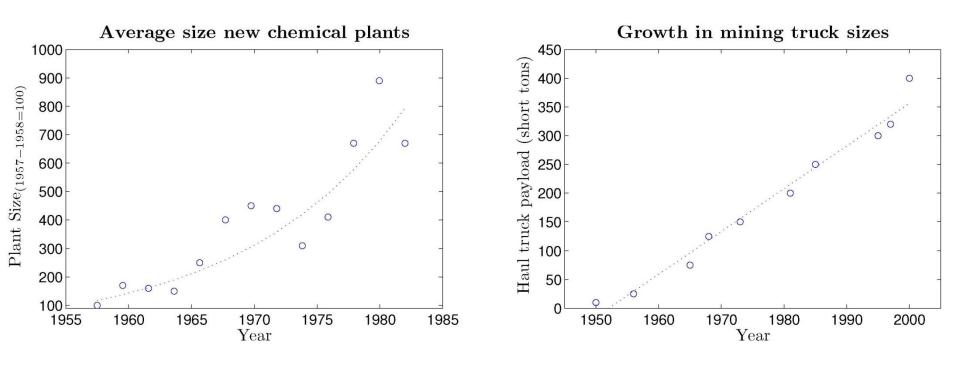
Massively Parallel Infrastructures

Klaus S. Lackner Arizona State University

January 2017

The Engineering Economist, 58:231–264, 2013 Copyright © 2013 Institute of Industrial Engineers ISSN: 0013-791X print/1547-2701 online DOI: 10.1080/0013791X.2013.825038


Small Modular Infrastructure

ERIC DAHLGREN,¹ CANER GÖÇMEN,² KLAUS LACKNER,¹ AND GARRETT VAN RYZIN²

 ¹Lenfest Center for Sustainable Energy, Columbia University, New York, New York
 ²Graduate School of Business, Columbia University, New York, New York

In this article we argue that advances made in automation, communication, and manufacturing portend a dramatic reversal of the "bigger is better" approach to cost reductions prevalent in many basic infrastructure industries: for example, transportation,

Historic Data on Scaling

Evolution of unit size in the chemical processing industry

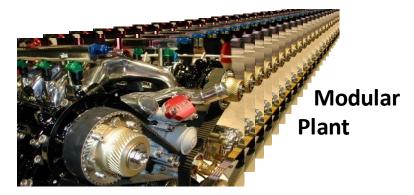
data adapted from Lieberman (1987)

Size of mining trucks data adapted from Koellner et al. (2004)

Eric Dahlgren, 2013 Ph. D. Thesis

Spot the low cost power plant

Per unit of power, the cost of a car engine is about 100 times lower than that of a power plant



Economies of Scale

Economies of Mass Manufacturing

Unit cost drops with production: $\frac{c_{2n}}{c_n} = \varepsilon$ Cost of n-th unit: $c_n = c_1 \varepsilon^{\log_2 n} = c_1 n^{\log_2 \varepsilon}$

$$\operatorname{Cost} = C_0 \cdot (\operatorname{size})^{\alpha}, \quad \alpha < 1$$

Cost of N units = $\frac{c_1}{1 + \log_2 \varepsilon} \cdot N^{1 + \log_2 \varepsilon}$

Empirically: $\alpha \cong 1 + \log_2 \varepsilon$

Labor cost favors large units

Learning is faster for small units

• Range of learning coefficients changes with size

40 Learning rate (%) 30 20 10 0 Small $\mu = 20.5\%$, $\sigma = 9.5\%$, $R^2 = 0.98$ Large $\mu = 10.8\%,\,\sigma = 8.1\%,\,R^2 = 0.97$ -10-2 2 0 Normal quantiles

Small/Large technology learning

Eric Dahlgren, Ph. D. Thesis 2013

Fixed cost favors large plants

- Fixed costs affect each plant, centralization reduces unit output cost
 - Central administration, sales etc.
 - Central maintenance
 - Centralized delivery of goods
 - \circ Operation of distribution hub

However, large plants could be modular

Massively parallel units vs. large monoliths

Efficiency scaling is complex

large units are better

- Heat retention
 - Insulation gets cheaper

• Wall losses (evap, etc.)

- Turbines need to be large
- Wall corrosion
- Contamination from walls

• Wall friction

• Pistons etc.

Control systems

• Less coordination required

small units are better

• Heat transfer

• Diffusion is helped

• Transport and diffusion

Take advantage of fast reactions

• Mixing

• Faster and more uniform

• Accurate control

• Temperature, pressure, etc.

• Redundancy

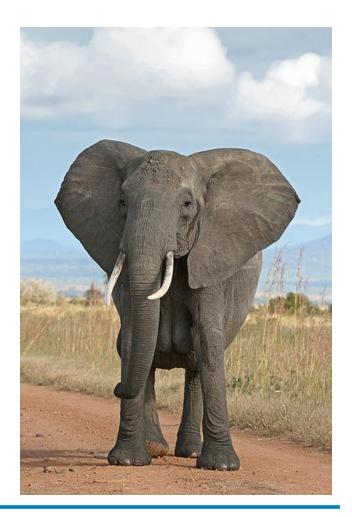
• Parallel systems

Case by case analysis required Each process has its intrinsic scale

Wall area to volume ratio?

The law of the walls does not work

- Structural considerations indicate
 - That bigger walls are thicker
 - Thickness grows linearly or faster

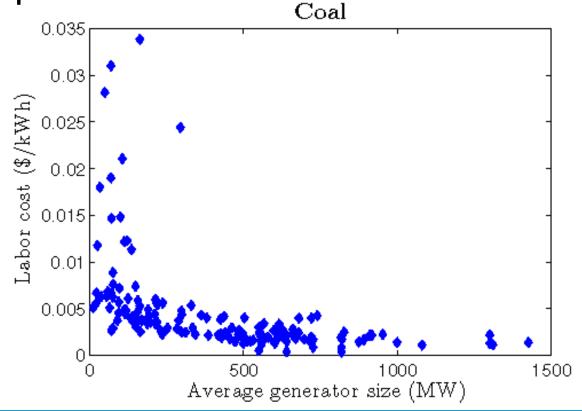

 \circ Mass of the walls grows faster than volume

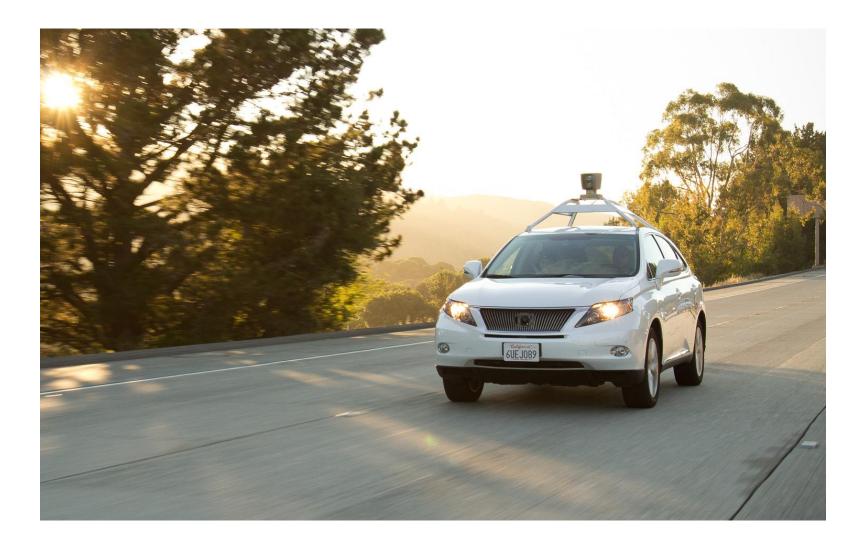
$$\partial_i \sigma_{ij} + F_j = \rho \partial_t^2 u_j$$

$$\sigma_{ij} = C_{ijkl} \varepsilon_{kl}$$

$$\varepsilon_{kl} = \frac{1}{2} (\partial_k u_l + \partial_l u_k)$$

Scaling: Surface to volume ratio


- Surface to volume ratios can help or hurt
- Structurally it hurts



Personnel costs drive scale

- Fixed and variable cost pilots and attendants
- Large fraction of cost scales with number of units
- Maintenance, repair and control

Automation breaks the link

http://wot.motortrend.com/google-autonomous-car-testing-fleet-adds-lexus-rx-450h-logs-300000-miles-245621.html

Why scale up?

• Large demand allows large plants

- Monolithic has been cheaper than modular (economies of scale)
- Cars cannot scale up, so they stayed small (learning curve)

Modular systems need control

Managing many parallel units

Personnel cost

Scales with number of units

Cost of information processing and simple decision making is dropping precipitously

Automation and robotic control systems can break the link between labor and unit size

The advantages of being small

• Reliability constraints are relaxed

- Replaced by ultra-high redundancy
- Automatic fault detection and replacement

• Shorter deployment times

- Faster response time
- Risk reduction
- Flexibility in deployment
- Operational life times can be shortened
 - More learning, mistakes are less costly
 - Reduce risk

Some efficiency gains

Inertia of large systems

• Investments are large

- High risk aversion
- \circ Tried and true technologies
- \circ Little innovation
- Large hurdle to start

Life times are long

- Long lead times
- Great uncertainty in future markets

• Little learning

Moving to a Mass Production Paradigm

Shorter Lifetime

Encourages learning
 More generations of learning

Lower unit cost

Encourages experimentation
Gives new ideas a chance

2 generations from Thomas Alva Edison 20 generations from Henry Ford 100 generations from Turing

Rescaling is disruptive

Cray supercomputer (from NASA)

One ton per day unit

100 million units would eliminate all emissions

world production of cars: 80 million per year

Copyright 2008 by Global Research Technologies, LLC, All Rights Reserved