CSLF - Carbon Sequestration Leadership Forum

CDR – Carbon Dioxide Reduction

Bergen, 27-30 June 2022

MemCCSea: Carbon Capture at sea

Dr Solon Economopoulos
Associate Professor, Dept. of Chemistry, NTNU

email: solon.oikonomopoulos@ntnu.no

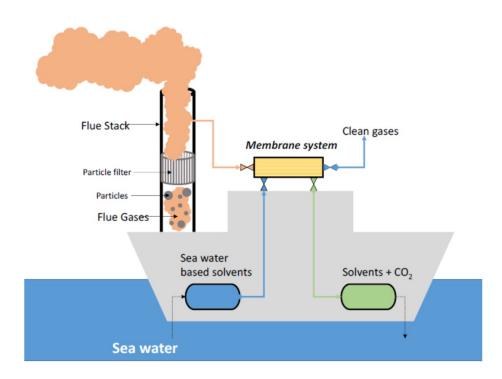
The MemCCSea project No 299690 has received funding from GSRT (GR), FZJ/PtJ (DE), RCN (NO), DoE (USA) and is cofunded by the European Commission under the Horizon 2020 programme.

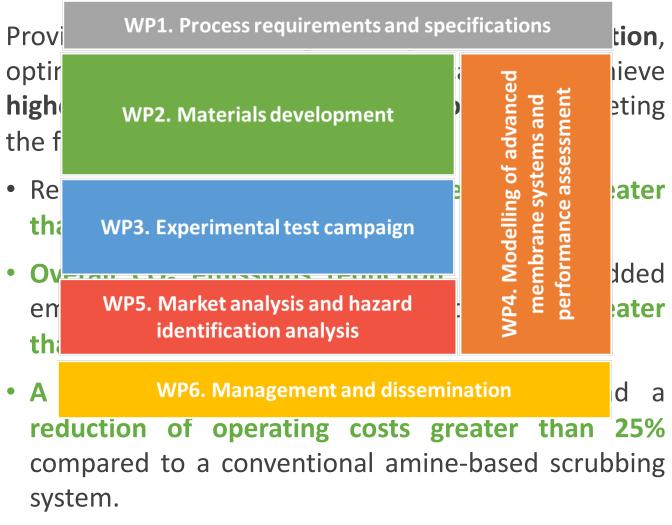
MemCCSea

Innovative membrane systems for CO₂ capture and storage at sea

Project duration 1/11/2019 – 30/4/2022 (30M) Extension to 31/10/2022

> Budget 1.98 M€




Project Concept & Key Objectives

The MemCCSea Concept

systems for flexible operational and cost-effective post-combustion CO₂ capture in maritime and off-shore applications.

Key Objectives

Project Impact

GHG emissions from international shipping **have risen by more than 30**% over the last 30 years, a larger increase compared to every industrial and transport sectors except international aviation, with **increases up to 250**% compared to current levels expected until 2050.

Strict regulations for CO₂ emissions from shipping (40% reduction of GHG emissions by 2030, 11% reduction in carbon intensity by 2026) and are reflected in updated calculation of key efficiency indices (EEDI, EEXI, CII)

Active participation of industry & classification society

Leading crude oil tanker shipping company worldwide

Leading EU classification society

Active participation in related CCS projects for energyintensive industries

Carbon capture and mineralization in the **cement industry**

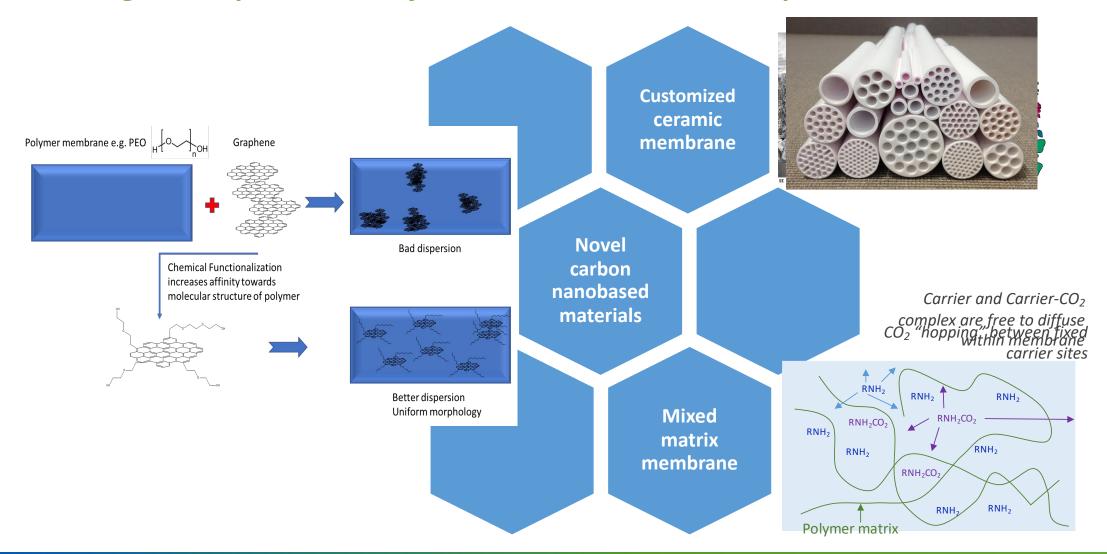
Membrane-based CO₂ separation processes in the biofuels production industries

17 MAY 2022

2022

Eastern Pacific Shipping and Value Maritime team up to install the first carbon capture solution onboard a pair of tankers

The Singapore-based tonnage provider will retrofit two MR tankers with carbon capture systems, making them the largest ocean-going vessels fitted with carbon capture technology to date


Japanese shipbuilding giant Mitsubishi announced on Monday (31 August) that it will build and test a carbon-capture system for ships, aimed at significantly reducing the emissions of the maritime sector.

Project Technology

Re-design and optimization of membranes materials and processes

Project Innovation - Process Marinization

Downstream bulk

Maritime CO₂ storage options (Task Leader: DNV)

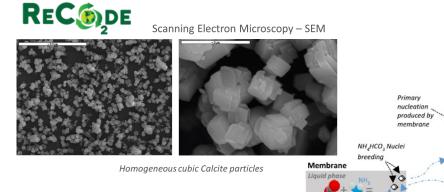
Carbon Capture and Storage options

Possible locations: CAPTURE

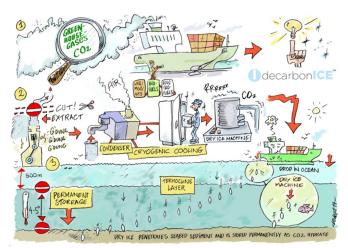
Possible locations: STORAGE

Carbon Storage Challenges

Limited space onboard (cf. solidification)

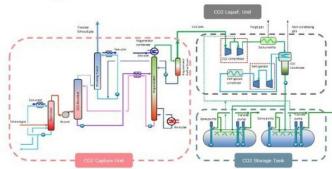

Sea motions (cf. liquefaction)

Low CO₂ fractions


Purity levels of the CO₂ product

Seakeeping

Carbon mineralization


Conversion to hydrates

Liquefaction

System Composition of CCS on board

Key Achievements

- A case ship for (virtual) membrane-based carbon capture system integration has been selected and operating conditions and exhaust gas characteristics defined (in close collaboration with EURONAV)
- Selection, development and screening of membrane (polymeric+graphene) & solvents (seawater, amine-based, metal hydroxides) for gas-liquid membrane capture.
- Ceramic membrane surface modification for increased hydrophobicity completed and evaluated.
- A prototype pilot unit for ashore membrane testing is being developed and test protocols for the experimental evaluation have been defined.
- Process model for mass and energy balances for membrane-based capture module assembly on-board ships scale-up.
- ✓ Recovery of the main engine CO₂ emissions greater than 90%
- ✓ A 10-fold reduction of system volume compared to a conventional amine-based scrubbing system.

Still pending:

> reduction of operating costs greater than 25%

➤ Overall CO₂ emissions reduction (including added emissions by the capture plant and utilities greater than 50%

