Examples on offshore CO₂-EOR development supported by CLIMIT program in Norway

Hans Jørgen Vinje Director CLIMIT

Gassnova and the Research Council of Norway

Norway: Offshore CO₂ EOR Challenges - Mitigations

No CO2 supply

Pipeline

Ship supply

- Space limitations on platforms
 - Subsea installation
- Weight limitations
 - Subsea installation
- Corrosion issues
 - 13% Cr needed standard for subsea wells
- High cost when modifications done topsides
 - Short/no downtime with subsea installation
- HSE concern by sudden topside release
 - No issue subsea

Akersolution CO₂-EOR concept

Separation & CO₂ return subsea

Project history: Feasibility; 2013—16

- De-risking and qualification of technology components
 2016→
- Focus on compressors and membranes

Project objective

The objective is to assess the technical and economic feasibility of a CO2 separation and reinjection system from a CO2 flooded oil reservoir; minimizing the need for topside modifications. The development of a robust subsea CO2EOR system will be based on the

proven technology of the Åsgard Subsea Compression system.

Potential

Presenting an economically and technically viable subsea solution for treatment of CO2 rich well stream. The concept can enable deployment of an offshore

CO2 EOR re-injection system as a value-creating supplement to permanent CO2 storage.

Innovation

Further development of subsea compression technology for the application with a gas mixture of hydrocarbon and CO2.

I regi av Gassnova SF og Norges Forskningsråd

Two important subsea building blocks

2010 - 2015 Asgard:

- 21 MSm³/d flow rate
- 2 x 11.5 MW compressor power
- 300 m water depth
- 40 km step-out distance
- Topside Variable Speed Drives, Circuit breakers and UPS
- **Delivered by Aker Solutions**

- Onshore stacking not feasible subsea
- Compact packing arrangement developed by AKSO

Powered by Gassnova and The Research Council of Norway

AkerSolution concept for subsea CO2-EOR

INFLOWCONTROL

Technology for

«autonomous inflow control» valves in oilproducers

In an oilproducer well:

Shut off sections with breaktrough of gas, water or CO2

Commercial for normal petroleum producers

Tested in 2016 for CO₂-EOR at Weyburn field in Canada

The Motivation

- Long horizontal wells to ensure maximum reservoir contact
- Non-uniform well drainage creates gas/water breakthrough
- Conventional ICD can delay the breakthrough problem, but:
 - The solution is to stop the gas/steam/water locally and completely

InFlowControl Description of AICV Technology

- Autonomous ICD (AICV)
 - AICV distinguishes between fluids based on viscosity.
 - The AICV chokes back zones with pure water or CO₂
 - Thus AICV well will increase DrawDown and redistrubate production to oil zones along the well
 - AICV is reversible; it will re-open when it senses oil again.

AICV Open Position

AICV Closed Position

Paper 181552 • Haavard Aakre, Glenn Woiceshyn

Tester at Weyburn field in 2016; Combined AICV and ICD Results (Weyburn)

- Base line: Open hole
- Oil rate 5 bbl/day
- Oil cut: 0,4 %

- Combined mode
- Oil rate 54 bbl/day
- Oil cut: 2,1 %

Thank you!

I regi av Gassnova SF og Norges Forskningsråd